Overview
Walls with higher STC values have been achieved for years using a variety of construction techniques. Today, many high-quality multi-family projects target STC-65. Code is now STC-50 the minimum requirement for “for sale” construction and rentals that might be converted to “for sale”. Even though most resilient channel assemblies are not able to meet such requirements, they still show up in projects, usually due to a lack of understanding about newer, more reliable noise damping technologies.

Resilient Channel (RC) is Easily Short Circuited
When installed correctly in pristine lab settings, resilient channel improves STC ratings by about 5-7 points or more, depending on construction. However, resilient channel is easily “short circuited”, so very careful handling and construction techniques must be followed — so careful in fact, that few, if any, can actually achieve the desired result in the field. In order for resilient channel to be installed correctly, no screws can ever touch a stud or floor/ceiling assembly, drywall must not touch floors or adjacent walls or ceilings, no pictures or shelves can be hung on the wall where the fastener screws into the studs, etc. If even one does, it can destroy any gain that would have been had on the entire wall.

Noise is the #2 Litigation Issue in Multi-Family
Recent investigation has shown that resilient channel construction has a post-construction failure rate of 90%. Given nationwide litigation history and concerns regarding party walls and floor/ceiling assemblies, especially in multi-family construction, one must be beyond careful when using resilient channel, if one were to still use it at all.

Acoustical engineering consultants are frequently called in to provide expert testimony in issues arising from faulty resilient channel installations that result in mediation, arbitration and litigation. Litigation about noise issues is becoming more frequent, and the cost of litigation and settlements have risen sharply.

High Failure Rates = High Contingencies
Because of high field failure rates of resilient channel, many large developers set aside up to $30,000 per unit for future litigation that has often included noise issues due to RC failure. While using resilient channels is appealing only from a construction cost perspective (ignoring litigation risk), developers, architects, and builders must be fully aware of the difficult construction requirements, as well as the post-construction failure rate and litigation risk before still considering using them.

State Laws
In addition to nationwide litigation, California and other states have proposed or enacted laws that give even more specific rights to condo and townhome buyers. For instance, SB 800 was signed into California law on September 20, 2002. It applies to new construction intended to be sold as individual dwelling units, whether as single-family homes or attached units. SB 800 is codified at Civil Code §§895, et seq and establishes a one year warranty specifically for “Noise transmission from adjacent units in attached structures”.

Caveat Emptor
For those still considering using resilient channel construction, the following page contains a comprehensive list of issues that one must be aware of before a project begins. Source: these problems were compiled from numerous conversations with acoustical engineers, construction litigation attorneys, construction insurance agencies, architects, general contractors and drywall subcontractors.

Summary
Resilient channels pose a significant risk of failure in floor/ceiling and party wall assemblies. Lab specifications showing STC 43-55 often result in field-tested STCs in the 34–38 range. Failures trigger litigation and warranty claims and damage the project brand, reputation, word of mouth and resale values.
1. **The original RC-1 used in most lab tests no longer exists.** USG stopped making the product in 1985. Most test results are based on STC tests conducted 10 or more years ago on different fabrications. As there is no standard for RC channel fabrication, the various resilient channels available vary greatly in their resilient (stiffness) characteristics. Using currently available RC channels that are often too stiff or that have holes the wrong size or shape results in reduced STC values. There are few current RC channels available that have recent test results based on their actual fabrication and design.

2. **Dead on arrival.** RC channels are thin and prone to damage from shipping or on-the-job storage. Any bend in the channel can cause shorting. We have multiple reports of damaged RC channels that are deployed because by the time the damage is perceived, it is too late to re-order.

3. **The RC channels are placed too close together.** If this happens, the composite stiffness of the wall will be too high and will result in reduced sound insulation.

4. **The RC channel is often drawn on the architectural plan and/or installed upside down.** In such instances, the weight of the drywall pushes the channel into the studs (instead of pulling it way from the studs when installed properly) causing a short circuit in the wall, resulting in poor sound insulation.

5. **The RC channel extends too far and touches an adjoining wall.** This error causes a short circuit in the wall resulting in radically degraded sound insulation.

6. **A screw is placed incorrectly.** While the drywall is being attached to the resilient channel, a screw that accidentally attaches into a stud or touches a stud at any point will short circuit the wall and result in poor sound insulation.

7. **Insufficient gap between the wall with the resilient channel and any adjacent wall.** If the drywall attached to the RC channel touches the drywall on the adjoining wall, the wall will be short circuited, resulting in reduced STC value.

8. **Drywall is not installed properly.** If the subcontractor adds drywall that is beyond spec (e.g., adding a layer of Type X to meet fire code), the resulting structure can sag, and the weight of the drywall on the resilient channel can cause the wall to touch the floor, causing a short circuit in the wall, resulting in poor sound insulation.

9. **Electrical junction boxes attached to the stud and to the wall.** This common error causes a short circuit in the wall and results in poor sound insulation. This mistake is easy to make with the faceplate, which must also be isolated, or by not cutting enough of the drywall away around the junction box. The same principle applies to ceiling attachments such as lighting and fans.

10. **Gaps around the junctions.** If junction boxes at the wall are sealed with standard caulk that hardens over time (instead of non-drying non-skimming acoustical sealant), or not sealed with anything, this will cause a short circuit in the wall, resulting in poor sound insulation.

11. **Resilient ceiling.** If the ceiling is also resilient, the walls and the ceiling cannot touch each other. To achieve this, it is recommended the walls be put up before the ceiling. This is counter to standard drywall installation practice.

12. **Actions of other subcontractors.** When RC channels are used in floor/ceiling assemblies involving stuffing materials into the open truss, the risk is magnified. Plumbing, HVAC and electrical materials are routinely attached inside the small cavities in ways that guarantee short-circuiting the RC channel.

13. **Green wood warping.** Most multifamily housing (such as west of the Mississippi River) is made of the less expensive green wood, which dries after installation. The drying process can distort the framing by as much as 1/2" in extreme situations; 1/4" is common. This torque can bring the RC channel in contact with other elements and cause a short circuit.

14. **Moisture & humidity warping.** In high-humidity areas (such as the Eastern seaboard), humidity can bow and buckle drywall, 1/4" to 1/2" in many
cases. This distortion can bring the RC channel in contact with other elements and cause a short circuit.

15. **Foundation settling.** Foundation settling, the #3 cause of litigation, is a common occurrence. A 1/4" or 1/2" settling distortion can bring the RC channel in contact with other elements and cause a short circuit.

16. **Language barriers.** The high incidence of RC failure contrasts with good results established in the top labs. This discrepancy points out the need to have highly trained, disciplined personnel supervising and performing the installation. In many construction crews, many of workers are foreign-born. The ability to communicate in English fluently, understand and execute written and verbal instructions for something as delicate as RC channels is required.

17. **Owner/tenant actions.** If, during the life of the property, the owner or tenant installs materials to the wall, such as a picture or lighting, the wall can easily be short circuited. In the case of hotels, many products are routinely attached to the walls for various reasons, including anti-theft and seismic restraint: bed head-board, writing desks, open shelving system, closet shelving, refrigerator, safe, sconces, mirrors, paintings, bathroom shelving, television wall stands, decorative wall hanging, crown molding, baseboard, and wainscoting. For rigidity and security, these products are attached to the studs by screws, which invariably cause a short circuit and significantly reduce the STC rating of the wall. Similarly, if RC channels are used in ceiling construction, any lighting (including track lights and ceiling fans) introduced post construction could reduce the ceiling’s STC value. Also, any retrofit for new communication technology, that requires a junction box to be attached to the wall will significantly reduce the wall’s STC value. This is particularly risky because the location of the studs and RC channels is hidden and difficult to find post construction. Either the wall or ceiling has to be left alone for the life of the property or significant post-construction risk occurs.

18. **Furniture.** If the owner (or hotel guest) moves heavy furniture (e.g. bed, desk) against the wall with force, it can cause the resilient channel to bend slightly and touch the studs, thus causing a short circuit in the wall, reducing the wall’s STC value.

Other factors driving up risk:

19. **Availability.** The current shortage of steel has forced RC channels into allocation.

20. **Inspections.** In several states, RC channels have developed such a contentious reputation that a special inspection must be completed before the wall or ceiling can be closed up. Scheduling a special inspection can take several days.

For more information about how Serious Materials can help with your next noise reduction project, please call 1.800.797.8159 or visit www.QuietRock.com.